Orrery Software i NTF FactLn() and GammaLn()

NOTE TO FILE:
Garvin H Boyle
Dated: R4: 180214

About Error in FactLn() and GammaLn() Implementations

Frontispiece

Figure 01

Stirling's Approximation vs. Actual
Absolute Error

8

y = 0.4942573765449120 In(x) + 0.9455920908191700
R? = 0.9998754800763470

13
<]
[
w
U
&
3
=]
=]
w
E-]
<

Orrery Software i NTF FactLn() and GammaLn()

Table of Contents

1 - RETEIBICES ...ttt bbbttt bbbt bbbt e et et e sb e be st et e benre s 1
2 = BACKGIOUNG........eoiiiiie bbbt bbb 1
B U o[0T PRSP 1
B [T 1] [0 o PRSP RTROS 2
4.1 - A TWO-PArt ProDIEMcoiii bbb 2
4.2 - Examination of LN(X!) WHeN X>L170ccciiiiieiiie e 2
4.2.1 - Stirling’s Approximation — BaSiC FOIMcccccvviiiiiiiicic e 2
4.2.2 - Definition of Entropy for ABM-Related HiStograms...........c.ccoovvvveiinencnenenenenn 3
4.2.3 - EIrOr EVAlUBLIONS ..ot 3
4.2.4 - SUMMATY TOI IN(XD) oot e 6

4.3 - Examination of GammaLlin(X).........ccceieeriiiieiieie e see st sre e ste et sra e sra e 7
4.3.1 - Lanczos ApproxXimation Of T(XH1)cccooiiiiiiieiiieiese s 7
4.3.2 - Spouge’s Approximation 0f T(XT1) ...cccoiiiiiiiiiiiiiiese e 8
4.3.3 - Numerical Recipe for GammaLn(X+1).......cccccciveiiiiiiiiieieiie e 8
4.3.4 - Test of GAMMALN(X) TOF Smax..eeeereerrereerimriniesiae e seesie e seeie e seeesee e e eeesneesees 9

D CONCIUSION ettt ettt et e e e e e e ettt e 11

Orrery Software 1 NTF FactLn() and GammaLn()

1 - References
A

A. Dragulescu and V.M. Yakovenko (2000) “Statistical mechanics of money”, Eur. Phys. J.
B 17, 723-729.

140218 Email from Yakovenko R1.pdf

140409 NTF Discussion With Dr Yakovenko R1.pdf

150527 PPR - Definition of El R17.pdf

180118 NTF Custom Functions in Excel R3.pdf

180210 NTF Shannon Vs Boltzmann R3.pdf

180115 XLS Stirling's Approximation R4.xIsm
https://en.wikipedia.org/wiki/Stirling%?27s_approximation
https://en.wikipedia.org/wiki/Spouge%?27s_approximation
https://en.wikipedia.org/wiki/Lanczos_approximation

Press, Teukolsky, Vetterling and Flannery (1986) “Numerical Recipes in Fortran”,
Cambridge, pp 206-209

L. 180219 Test of GammalLn for Entropic Index R2.xlsx

ACTIOMMUOD

2 - Background

This note is written in an attempt to understand exactly how Stirling’s approximation to In(A!)
works, and also to understand the GammaLn() workaround. The context of my intended usage is
the calculation of the entropy associated with a histogram derived from an agent-based model.
For example, if you create a histogram of the distribution of wealth of a set of agents, there may
be many bins with a small number of agents, and some bins with a lot of agents. | need a
formula that works well for numbers on the interval [0, o] with special emphasis on the very low
segment of that domain [0, 10].

Ref A is a paper in which Yakovenko introduces some seminal ideas about calculating entropy in
agent-based models. Refs B through F is a series of diary notes in which | examine the nature of
entropy as it applies to histograms of conserved quantities in agent-based models.

Ref G is the MS Excel spreadsheet in which | tested some entropy equations and constructed the
associated graphs for this diary note.

Refs H, | and J are very informative online articles about the origins and nature of Stirling’s
approximation for In(x!) and the approximations of Spouge and Lanczos for In(I'(x)).

Ref K is a book in which one can find short-cut algorithms for implementing In(x!) and In(I"(x))
on a computer.

3 - Purpose
To understand the operational characteristics of the mathematical formulae used to approximate
In(x!) and GammaLn(x).

Orrery Software 2 NTF FactLn() and GammaLn()

4 - Discussion

4.1 - A Two-Part Problem

| need to be able to evaluate In(x!) under two different types of circumstances that are normally

difficult:

» Many computer programs (most) cannot calculate In(x!) when x is greater than 170 due to
overflow conditions. The final answer is not too large to express, but, typically, the
intermediate value is. Standard computer implementations cannot handle x! for x greater
than 170. Ln(x!) rises faster than In(x) but more slowly than x!. The standard way to avoid
this overflow problem is to approximate the answer using an alternate function which does
not have to calculate x! first. In particular, some variation of Stirling’s Approximation of
In(x!) is used.

> But also, to calculate the maximum value of the entropy for a histogram, | will need to
calculate the lawn of the factorial of a non-integer argument. For example, | may need to
calculate In(3.2!), and the factorial function is defined only for integral arguments. There is
another function called the Gamma function (usually represented as I'(x)) which produces the
same curve as x! when x is integral, but is also able to produce a smooth curve for non-
integral numbers in between. They are related as x! = I'(x+1) for all integral x>=0. What |
will need is the lawn of the Gamma function, and in many computer mathematical libraries
there is a function called GammalLn() which can be used to evaluate Ln(x!) ~ Ln(I'[(x+1)).

In short, I need a special replacement for In(x!) for when x>170 or when x & Integers.

Before | proceed with this, just for clarification purposes, Stirling’s Approximation comes into
my deliberations in another similar but subtly different way. Boltzmann’s version of the
equation for entropy can be converted to Shannon’s version of the equation for entropy through
the substitution of the basic form of Stirling’s approximation into Boltzmann’s equation, after the
Q is replaced with the multinomial coefficient ©2= A!/[TX,[a;!]. For a detailed mathematical
derivation, and an exploration of the error this creates between the two famous formulae, see Ref
F. So, ‘Stirling’s Approximation’ plays some role in distinguishing between what I am calling
the ‘Boltzmann regime’ and the ‘Shannon regime’. I decided to go forward with the Boltzmann
regime to avoid the systemic bias introduced into the analytic development of the Shannon
regime. Within the so-called Boltzmann regime, nevertheless, to evaluate the equations of the
Boltzmann regime, I still need to depend on Stirling’s approximation to In(x!) and/or the
GammalLn() function. | need to understand how this bias works, and how to minimize its effects.

4.2 - Examination of Ln(x!) When x>170

4.2.1 - Stirling’s Approximation - Basic Form
This is the standard basic version of “Stirling’s approximation” for In(Al):

In(A!) = (ALn(4)) — A [1]
It is used in the formulae for entropy when A! is too large to be calculated. Isay “basic” because

Stirling’s formula is actually an infinite series of ever-more-accurate terms, but equation [1] is
the version most often quoted.

Orrery Software 3 NTF FactLn() and GammaLn()

4.2.2 - Definition of Entropy for ABM-Related Histograms
This is the standard equation for the definition of entropy of a histogram within what | am calling
the ‘Boltzmann regime’:

S = gC X In(Q) [2]

where gC is a dimensionless scaling factor and Q is the total number of possible microstates
associated with one configuration of the histogram. Q can be calculated using the multinomial
coefficient from combinatorial mathematical theory:

Q=4 3
/M (@) B3l
in a K-bin histogram, where A is the number of agents, and a; is the number of agents in bin i of
the histogram.

5S = 5C X In (A! - (ai!)> = ,Cln(AD — T, In(a;N)] [4]

But neither MS Excel nor the C++ mathematical libraries can calculate In(A!) if A>170 due to
overflow. That means it requires too many bits to accurately store the number in the computer’s
memory. 170 is a pretty small number. Many runs of my ABMs have more than 170 agents.
But what is much more concerning, almost all circumstances for which | calculate entropy, most
of the bins contain less than 170 agents. To usefully compare my analytical results (developed in
MS Excel) with my experimental results (developed using C++ in the EiLab application), | need
to consistently use Stirling’s approximation, but only whenever one of the following happens on
any and all implementation platforms:

e A>170;0r

e 3;>170.

4.2.3 - Error Evaluations

Stirling’s approximation for the function In(x!) is actually defined for the complex plane Z (the
Arcand plane) and only the real portion is of interest to me. Furthermore, it can be written as a
rather complex infinite series that approximates the In(x!) more and more closely as terms are
added. The most basic form of Stirling’s approximation is In(x!)=(x In(x)) — x. | start there.

If you calculate the exact value of In(N!) for N Figure 01

in [1, 170], and Stirling’s approximation of

In(N!) for the same range of N, and take the

difference as a % of In(N!), you get a pair of

interesting graphs. In preparing the first graph

(see Figure 01) I noted three things:

» Ln(0!) is a troublesome value to compute,
and | must provide a work-around for it;

» The absolute error is rising; and

» The logarithmic trend line produced by
least squares techniques has parameters that
can be useful as a correction to the basic
form of Stirling’s Approximation.

Stirling's Approximation vs. Actual
Absolute Error

3.00 /
5 /
£ 2.50

A= 0.4942573765449120 In(x) + 0.9455920908191700
R? = 0.9998754800763470

aaaaaaaaa

Orrery Software 4 NTF FactLn() and GammaLn()

The biue line is the absolute error. The black | U892

line is a logarithmic trend line produced by MS
Excel using a “least squares” technique, with
the equation for the trend line. | altered the
formatting of the equation of the trend line to
give me 16 digits of accuracy. Note that the R-
squared value is very high.

Stirling's Approximation vs. Actual
Relative Error

In the second graph (see Figure 02) the relative
error is immense for small N, but when you get
to N = 170 the relative error is 0.005%. The
absolute error is rising, but the value of In(N!)
is rising faster, so the relative error continues to

decline as N gets larger. But for small N, in the
area where my ABMs will be active, the relative error in Stirling’s approximation can be quite
large. My decision to avoid the use of Stirling’s approximation for small A and small a; is based
on these two graphs.
Figure 01 suggests that an improvement on equation [1] might be:

In(A!) = ((A + 0.494257376544912) Ln(A)) + (0.945592090819170 — A) [5]

Figure 03 presents the graphs for absolute and relative error for equation [5].

Figure 03 — Absolute and Relative Error associated with Equation [5].

Revised Stirling's Approx. vs Actual Revised Stirling's Approx. vs Actual
Absolute Error Relative Error

0.06 39

Absolute Error
Relative Error

mmmmmmmmmmmmmmmmmmmm
aaaaaaaaa

N (from 1to 170) X (from 1to 170)

Or more simply, equation [5] could be approximated by:
In(A") = ((A+0.5) Ln(A)) + (1 — A) [6]

Figure 04 presents the graphs for absolute and relative error for equation [6].

Orrery Software 5 NTF FactLn() and GammaLn()

Figure 04 — Absolute and Relative Error associated with Equation [6]

Revised Stirling's Approx. vs Actual
Absolute Error

Revised Stirling's Approx. vs Actual

Relative Error
0.00

9
, (I e e e L o e e = |
-0.01 135 13151719212325272931333537394143
9
-1%

-0.02

-0.03

-0.04

-0.05

Relative Error

=
g
2
=
w
o
2
2
]
a
E]
<

-0.0e

-0.07

-0.08

-0.09

N (from 1to 170) N (from 1to 170)

| note that, however you present Stirling’s Approximation of In(x!), the absolute error is the
largest when X is near zero. But in any histogram of a distribution of wealth there will almost
always be some empty bins. So, using Stirling’s approximation for values of In(x!) when x is
close to zero will cause serious distortions.

| also note that the relative error, in all three cases, approaches zero as x approaches 170. |
should examine that more closely. A couple of tables will clarify. Looking at the results when N
=169 and 170, for both Stirling and revised Stirling, we get these two tables:

Stirling’s

Approximation
N LN(FACT(N)) Equ [4] Absolute Error Relative Error
169 701.4372638 697.9528828 3.484380987 0.004967488
170 706.5730622 703.0857343 3.487327947 0.004935552

Revised

Stirling’s

Approximation
N LN(FACT(N)) Equ [5] Absolute Error Relative Error
169 701.4372638 701.4339652 0.003298615 4.70265E-06
170 706.5730622 706.5697327 0.003329594 4.71231E-06

With the standard version of Stirling’s approximation of In(N!) the absolute error is rising but the

relative error is falling. For the revised version of Sterling’s approximation, both the absolute
and relative errors are rising. This is not good.

Orrery Software 6 NTF FactLn() and GammaLn()

But, curiously, if | use the two simple parameters, things are a little better.
Using 0.5 and 1.0 as the two revised parameters:

Simply Revised

Stirling’s

Approximation
N LN(FACT(N)) Equ [6] Absolute Error Relative Error
169 701.4372638 701.5178 -0.080568371 -0.000114862
170 706.5730622 706.6536 -0.080571271 -0.000114031

The absolute error is larger and climbing, not good, but the relative error is larger but falling,
good. In either case, when N = 170, both sorts of revised formulae for Sterling’s approximation
seem to perform better than the standard form. This is true, of course, because they include one
more term in the asymptotic series of improvements on the standard form. (See Wikipedia
article)

Here’s another way to summarize it:

Option Absolute Error | Relative Error at | RMS Error on

Number | Option at N=170 N=170 [1,170]
Stirling unrevised

1 Equ [4] Rising falling 3.044133

Revised Stirling with
precise parameters

2 Equ [5] Rising rising 0.003146
Revised Stirling with
{0.5, 1} as

3 parameters Equ [6] Rising falling 0.078870

The RMS error is computed as

2 |[Y170 orror?
Erms = \/ZN_O /171

As expected, the standard version of Sterling’s formula performs less well on the interval [1,
170] compared to the revised versions.

4.2.4 - Summary for In(x!)

In summary:

e Boltzmann over Shannon — For reasons of exactitude, I do not want to use Shannon’s
formula for the definition of entropy because it distorts values calculated on sparsely-
populated histograms. Therefore I MUST use Boltzmann’s version of the definition of
entropy with the multinomial coefficient substituted in in place of Q.

e Barrier at 170! — However, Boltzmann’s equation requires extensive use of the function
In(x!), which cannot be calculated exactly for any value of x greater than 170. So a work-
around using Stirling’s Approximation needs to be implemented for histograms with heavily-
populated bins. This work-around should only be used on those bins having more than 170
agents.

Orrery Software 7 NTF FactLn() and GammaLn()

e A revised version of Stirling’s approximation, as shown in equation [6] seems to perform
best for numbers of the order of magnitude of [x>170], where many ABMs will be
functioning, and for which MS Excel and C++ cannot provide exact answers.

e For very large numbers (not shown here) Stirling’s approximation is good because the
relative error declines as In(N)/N and goes to zero as N rises.

Then, I can implement this in both MS Excel when | do my analysis and also in C++ or
NetLogo when I build my models.

4.3 - Examination of GammaLn(x)

When given the choice between (a) an accurate calculation using an approximate formula; or (b)
an occasionally approximate calculation based on an accurate formula; | have chosen to work
with the formula that gives precisely correct answers for the low range of inputs, and this
requires that | use GammaLn() for the Syax calculation.

GammaLn(x) is the combined formula for In(I"(x)) where In(x) is the natural logarithm function
and I'(x) is the Gamma function.

The Gamma function is a peculiar function which in some ways is just “made-up”, not being the
result of normal arithmetic. The factorial function is defined for integers, but not for the
rationals that fill the spaces between them. The Gamma function was, | believe, constructed to
fill that gap. But, it has a VERY peculiar definition.

4.3.1 - Lanczos Approximation of I'(X+1)

Here’s an excerpt from the Ref I article:

“In mathematics, the Lanczos approximation is a method for computing the
gamma function numerically, published by Cornelius Lanczos in 1964. It is a
practical alternative to the more popular Stirling's approximation for
calculating the gamma function with fixed precision. The Lanczos
approximation consists of the formula

1
P(z+1)=+v2r(z+g+3)" 2 e‘(”gﬁ)Ag(z]

z is a complex number from the Argand plane. This function merely approximates the Gamma
function. What’s more, it is an incomplete expression. The term at the end needs explanation:

Ay(z) = %Pn (9) + 1 (g)z—l-il + p2(9) ; i(f);zl_l)_ - N

And, so it goes on, explaining the role of g, the role of the p; coefficients, etc. And, since there
are a lot of exponents in this approximate definition of the Gamma function, taking the logarithm

Orrery Software 8 NTF FactLn() and GammaLn()

of I'(x+1) is a relatively easy next step. | can actually follow the mathematical arguments made
in these articles, but it is pretty dense stuff.

But, the implementation on a computer is doable, because there are certain values of g and pi that
make it converge quickly, and those parameters can simply be stored at great precision in an
array, and called upon when needed. The routines proposed in the Ref K book tend to be of that
sort.

4.3.2 - Spouge’s Approximation of I'(x+1)

Similarly, at Ref J a new approach published in 1994 is similar to Lanczos’ approximation and is
derived from the same source (Stirling’s approximation of x!). It does not converge as quickly,
but the coefficients are easier to calculate. Here’s an excerpt from the Ref J article:

“In mathematics, the Spouge's approximation is a formula for computing an
approximation of the gamma function. It was named after John L. Spouge

who defined the formula in a 1994 paper.[1] The formula is a modification of
Stirling's approximation, and has the form

1
[(z+1)=(z+a)"2e " 0+Z_+€a z)

where a is an arbitrary positive integer and the coefficients are given by

cp = V21
cr = —(_l)k_l (—k + a)k_%e_k“‘ ke {1,2 a—1}
k pu— (k_ 1)! - 3 PRI .

Again, the mathematics is dense.

4.3.3 - Numerical Recipe for GammaLn(X+1)

The Ref K book makes a good argument. It is better to implement the logarithm of the Gamma
function because it is less likely to overflow. Then, if you want Gamma(x) you simply calculate
it as e%™M™) On page 207 of the Ref J book is this version of GammaLn():

FUNCTION gammln (xx)
REAL gammln, xx
Returns the value In[I'(xx)] for xx > 0.
INTEGER
DOUBLE PRECISION ser, stp, tmp, x, y, cof(6)
Internal arithmetic will be done in double precision, a nicety that you
can omit if five-figure accuracy is good enough.
SAVE cof, stp
DATA cof, stp/76.18009172947146d0, -86.50532032941677d0,
24.01409824083091d0, -1.231739572450155d0, .1208650973866179d-2,
-.5395239384953d-5, 2.5066282746310005d0/
X=XX
y=x
tmp=x+5.5d0
tmp=(x+0.5d0) *log (tmp) —tmp
ser=1.000000000190015d0
do j=1,6

Orrery Software 9 NTF FactLn() and GammaLn()

y=y+1.d0
ser=ser+cof (j)/y
enddo
gammln=tmp+log (stp*ser/x)
return
END

This works in FORTRAN and can easily be translated to C++ or NetLogo or whatever computer
platform is being used. It is an implementation of Lanczos’ approximation.

4.3.4 - Test of GammaLn(x) for Smax

Ref L is an MS Excel spreadsheet in which | did various tests of calculations of entropy s, of
maximum entropy Smax, and of the entropic index Is. | used custom functions for this test, as
follows:

" Module containing custom functions for use with entropic index calculations.

S/ 17717 1777777177777/ 17777777777777777777/777/77/777/77/77//77/777//77/777/77
"// Orrery Software; Garvin H Boyle; orrery@rogers.com
L1177 7777777777777 77777777777777777/77//77//7//77//7//7/7/////7///7/777

/L1177 1777777771777/ 777777777777///777//7/777////7/7////7/7////77/7//777
"// This function computes In(x!) (using the Stirling approximation when needed).
"// Stirling"s approximation is: In(xX!)~((x+0.5)*In(x))+(1-x)
"// NS Excel is not able to calculate x! if x > 170.
"// So, when it can, this function does the exact calculation.
"// And when it cannot do that, it uses the Stirling approximation
/1117777777777 7777777777777 7777777777777777777777777777//777///7/77/7////7/7///777
Function LawnOfFactorial (x)
If x < 170 Then
LawnOfFactorial = Application.Ln(Application.Fact(x))
Else
LawnOfFactorial = ((x + 0.5) * Application.Ln(xX)) + (1 - x)
End If
End Function

ST 7777777777777 77777777777777777/77//77//7/7/77//7//7/7/////77//7//77
*// This function computes an entropic index for a five-bin histogram. 1i.e. K=5
LI 171177777 7777771777777 777777/777777/777/77/77//77/77//7//77///7//77//77/77
" It uses "LawnOfFactorial® for all factorials.

" 1t should be wrong when alpha is non-integral.

Function FiveBinEntropiclndex01(al, a2, a3, a4, a5)

K=5

A=al +a2 + a3 + a4 + ab5
S = LawnOfFactorial (A)

S = S - LawnOfFactorial(al)
S = S - LawnOfFactorial (a2)
S = S - LawnOfFactorial (a3)
S = S - LawnOfFactorial (a4)
S = S - LawnOfFactorial (a5)

Alpha = A /7 K
Smax = LawnOfFactorial(A) - K * LawnOfFactorial (Alpha)
FiveBinEntropiclndex0l = S / Smax

End Function

/I 7777777777777 77777777777777777777/77777//77777///777////7/7/////7/7///777
"// This function computes an entropic index for a five-bin histogram. 1i.e. K=5
IIIIIIIT7I 7777777777777/ 717777777777/777777///777////77/////77/////7777/
" 1t uses "LawnOfFactorial® for all factorials except alphal.

" It should be correct.

Function FiveBinEntropiclndex02(al, a2, a3, a4, a5)
K=5
A=al +a2 + a3 + a4 + ab5

Orrery Software 10 NTF FactLn() and GammaLn()

LawnOfFactorial (A)

S - LawnOfFactorial(al)

S - LawnOfFactorial (a2)

S - LawnOfFactorial(a3)

S - LawnOfFactorial (a4d)

S - LawnOfFactorial (a5)

a=A/Kk
Smax = LawnOfFactorial(A) - K * Application.GammaLn(Alpha + 1)
FiveBinEntropiclndex02 = S / Smax

End Function

nNnumuumnmumwm
(I T I T T |

L1177 7777777777777 777777777777/777777/7/77/7////77////77/7////7/7///777
"// This function computes the entropy for a five-bin histogram. i.e. K=5
U117/ 777/717777/77777/777777///777////777//7//77///7/7777/
" It uses "GammaLn()" for all factorials.

It should be correct.

Function FiveBinEntropy0O3(al, a2, a3, a4, a5)

K=5

A=al +a2 + a3 + a4 + ab5

S = Application.GammaLn(A + 1)

S = S - Application.GammaLn(al + 1)
S = S - Application.GammaLn(a2 + 1)
S = S - Application.GammaLn(a3 + 1)
S = S - Application.GammaLn(a4 + 1)
S = S - Application.GammaLn(a5 + 1)

FiveBinEntropy03 = S
End Function

/1117777777777 7777777777777 777777777777777777777777777//777////77/7////7/7///777
"// This function computes the maximum entropy a five-bin histogram. i.e. K=5
L1777 7777777777777 777777777777/7/777//7/777////77///////////7/7///7/77
" 1t uses "GammaLn()*" for all factorials.
" 1t should be correct.
Function FiveBinEntropyMax03(al, a2, a3, a4, a5)
K=5
A=al + a2 + a3 + a4 + a5
Alpha = A /7 K
Smax = Application.GammaLn(A + 1) - K * Application.GammaLn(Alpha + 1)
FiveBinEntropyMax03 = Smax
End Function

L1177/ 1777 7777777777777 77777/777777/777777/77777///7777//77777////77////7777/7
"// This function computes an entropic index for a five-bin histogram. 1i.e. K=5
“IILII1771 7711771177777/ 777//11777/717777/7/777//7/777////7777/777
" 1t uses "GammaLn()" for all factorials.

® 1t should be correct.

Function FiveBinEntropiclndex03(al, a2, a3, a4, a5)

K=5

A=al + a2 + a3 + a4 + ab5

S = Application.GammaLn(A + 1)

S = S - Application.GammaLn(al + 1)
S = S - Application.GammaLn(a2 + 1)
S = S - Application.GammaLn(a3 + 1)
S = S - Application.GammaLn(a4 + 1)
S = S - Application.GammaLn(a5 + 1)
Alpha = A /7 K

Smax = Application.GammaLn(A + 1) - K * Application.GammaLn(Alpha + 1)
FiveBinEntropiclndex03 = S / Smax
End Function

These custom functions depended upon the built-in MS Excel function GammaLn().

Orrery Software 11 NTF FactLn() and GammaLn()

In the spread sheet | set up a five-bin histogram, and calculated the entropy, maximum entropy,
and entropic index using different functions, as shown above.

The results, in short:
e GammaLn(x+1) is equal to Ln(x!) for all integer values of x € [0, 170].
e GammalLn(x+1) can handle all values, integer or otherwise, for x e [0, 10%7].

5 - Conclusion

Gammaln() is the preferred function to use in all calculations of entropy associated with agent-
based models.

